Modulation of the Kir7.1 potassium channel by extracellular and intracellular pH.

نویسندگان

  • Bret A Hughes
  • Anuradha Swaminathan
چکیده

Inwardly rectifying K(+) (K(ir)) channels in the apical membrane of the retinal pigment epithelium (RPE) contribute to extracellular K(+) homeostasis in the distal retina by mediating K(+) secretion. Multiple lines of evidence suggest that these channels are composed of Kir7.1. Previously, we showed that native K(ir) channels in bovine RPE are modulated by changes in intracellular pH in the physiological range. In the present study, we used the Xenopus laevis oocyte expression system to investigate the pH dependence of cloned human Kir7.1 channels and several point mutants involving histidine residues in the NH(2) and COOH termini. Kir7.1 channels were inhibited by strong extracellular acidification and modulated by intracellular pH in a biphasic manner, with maximal activity at about intracellular pH (pH(i)) 7.0 and inhibition by acidification or alkalinization. Replacement of histidine 26 (H26) in the NH(2) terminus with alanine eliminated the requirement of protons for channel activity and increased sensitivity to proton-induced inhibition, resulting in maximal channel activity at alkaline pH(i) and smaller whole cell currents at resting pH(i) compared with wild-type Kir7.1. When H26 was replaced with arginine, the pH(i) sensitivity profile was similar to that of the H26A mutant but with the pK(a) shifted to a more acidic value, giving rise to whole cell current amplitude at resting pH(i) that was comparable to that of wild-type Kir7.1. These results indicate that Kir7.1 channels are modulated by intracellular protons by diverse mechanisms and suggest that H26 is important for channel activation at physiological pH(i) and that it influences an unidentified proton-induced inhibitory mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of inwardly rectifying K+ channels in retinal pigment epithelial cells by intracellular pH.

Inwardly rectifying K+ (Kir) channels in the apical membrane of the retinal pigment epithelium (RPE) play a key role in the transport of K+ into and out of the subretinal space (SRS), a small extracellular compartment surrounding photoreceptor outer segments. Recent molecular and functional evidence indicates that these channels comprise Kir7.1 channel subunits. The purpose of this study was to...

متن کامل

Cytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes

Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...

متن کامل

High-throughput screening reveals a small-molecule inhibitor of the renal outer medullary potassium channel and Kir7.1.

The renal outer medullary potassium channel (ROMK) is expressed in the kidney tubule and critically regulates sodium and potassium balance. The physiological functions of other inward rectifying K(+) (Kir) channels expressed in the nephron, such as Kir7.1, are less well understood in part due to the lack of selective pharmacological probes targeting inward rectifiers. In an effort to identify K...

متن کامل

Evidences on the existence of a new potassium channel in the rough endoplasmic reticulum (RER) of rat hepatocytes

Introduction: we have recently reported the presence of two potassium currents with 598 and 368 pS conductance in the rough endoplasmic reticulum (RER) membrane. The 598 pS channel was voltage dependent and ATP sensitive. However, the 368 pS channel was rarely observed and its identity remained obscure. Since cationic channels in intracellular organelles such as mitochondria and RER play imp...

متن کامل

Development of a selective small-molecule inhibitor of Kir1.1, the renal outer medullary potassium channel.

The renal outer medullary potassium (K+) channel, ROMK (Kir1.1), is a putative drug target for a novel class of loop diuretic that would lower blood volume and pressure without causing hypokalemia. However, the lack of selective ROMK inhibitors has hindered efforts to assess its therapeutic potential. In a high-throughput screen for small-molecule modulators of ROMK, we previously identified a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 294 2  شماره 

صفحات  -

تاریخ انتشار 2008